Equivalence of von Neumann regular and idempotent matrices
نویسندگان
چکیده
منابع مشابه
Von Neumann Regular Cellular Automata
For any group G and any set A, a cellular automaton (CA) is a transformation of the configuration space A G defined via a finite memory set and a local function. Let CA(G; A) be the monoid of all CA over A G. In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element τ ∈ CA(G; A) is von Neumann regular (or simply regular) if there ...
متن کاملCombining Local and Von Neumann Regular Rings
All rings R considered are commutative and have an identity element. Contessa called R a VNL-ring if a or 1 a has a Von Neumann inverse whenever a 2 R. Sample results: Every prime ideal of a VNL-ring is contained in a unique maximal ideal. Local and Von Neumann regular rings are VNL and if the product of two rings is VNL, then both are Von Neumann regular, or one is Von Neumann regular and the ...
متن کاملCalculating Different Topological Indices of Von Neumann Regular Graph of Z_(p^α )
By the Von Neumann regular graph of R, we mean the graph that its vertices are all elements of R such that there is an edge between vertices x,y if and only if x+y is a von Neumann regular element of R, denoted by G_Vnr (R). For a commutative ring R with unity, x in R is called Von Neumann regular if there exists x in R such that a=a2 x. We denote the set of Von Neumann regular elements by V nr...
متن کاملRelative Regular Modules. Applications to von Neumann Regular Rings
We use the concept of a regular object with respect to another object in an arbitrary category, defined in [3], in order to obtain the transfer of regularity in the sense of Zelmanowitz between the categories R−mod and S−mod, when S is an excellent extension of the ring R. Consequently, we obtain a result of [5]: if S is an excellent extension of the ring R, then S is von Neumann regular ring i...
متن کاملE-Clean Matrices and Unit-Regular Matrices
Let $a, b, k,in K$ and $u, v in U(K)$. We show for any idempotent $ein K$, $(a 0|b 0)$ is e-clean iff $(a 0|u(vb + ka) 0)$ is e-clean and if $(a 0|b 0)$ is 0-clean, $(ua 0|u(vb + ka) 0)$ is too.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1991
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1991.102430